Στα μαθηματικά, ένας φανταστικός αριθμός (ή καθαροφανταστικός αριθμός) είναι ένας μιγαδικός αριθμός, το τετράγωνο του οποίου είναι αρνητικός πραγματικός αριθμός.
Ο όρος πλάστηκε από τον Ρενέ Ντεκάρτ το 1637 στο έργο του "Η Γεωμετρία" (La Géométrie) και είχε κάπως υποτιμητική σημασία. Το τετράγωνο κάθε πραγματικού αριθμού, είναι πάντα ένας μη αρνητικός αριθμός.
Συνεπώς, αριθμοί με τις ιδιότητες των φανταστικών αριθμών θεωρούνταν εκείνη την εποχή ότι δεν μπορεί να "υπάρχουν" πραγματικά, όπως άλλωστε και το μηδέν και οι αρνητικοί αριθμοί θεωρήθηκαν κατά καιρούς από κάποιους ως πλασματικοί ή άχρηστοι.
Μπορεί κανείς να θεωρήσει τους φανταστικούς αριθμούς ως μια επέκταση του συνόλου των πραγματικών αριθμών και ως μια "μαθηματική αφαίρεση".
Παρά το παραπλανητικό τους όνομα, οι φανταστικοί αριθμοί είναι όχι μόνο υπαρκτοί αλλά και πολύ χρήσιμοι, με εφαρμογή στον ηλεκτρισμό, στην επεξεργασία σημάτων και σε πολλές άλλες εφαρμογές.
Η πολική μορφή των μιγαδικών αριθμών τους καθιστά ιδανικούς για την αναπαράσταση περιστρεφόμενων διανυσμάτων και φάσεων και συνεπώς χρησιμοποιούνται ευρύτατα στην ηλεκτρονική (για την αναπαράσταση εναλλασσόμενων ρευμάτων), στην κυματική και γενικά στη μελέτη των περιοδικών φαινομένων.
Πραγματικοί αριθμοί
Κάθε πραγματικός αριθμός είναι είτε ρητός είτε άρρητος.
Ρητός, κάθε α⁄β όπου α και β είναι ακέραιοι και β δεν είναι 0.
Παραδείγματα άρρητων αριθμών είναι το π ή το e και η τετραγωνική ρίζα του 2.
Οι άρρητοι αριθμοί είναι όλοι οι πραγματικοί αριθμοί οι οποίοι δεν είναι ρητοί.
Οι άρρητοι αριθμοί έχουν άπειρο αριθμό, μη επαναλαμβανόμενων περιοδικά, δεκαδικών ψηφίων.
Μία χαρακτηριστική ιδιότητα των άρρητων αριθμών είναι ότι το άθροισμα δύο άρρητων δίνουν συνήθως ως αποτέλεσμα έναν ρητό αριθμό.
Οι Πυθαγόρειοι δίδασκαν ότι οποιοσδήποτε φυσικός αριθμός μπορεί να εκφραστεί ως λόγος δυο άλλων φυσικών αριθμών και διέδιδαν πως με τη χρήση των αριθμών μπορούσαν να επιλύσουν όλα τα προβλήματα του πραγματικού κόσμου.
Η πρώτη ενδεχομένως κρίση στα Μαθηματικά εμφανίστηκε συνοδευόμενη από πολιτική κρίση όταν, σύμφωνα με την παράδοση, ο Ίππασος ο Μεταπόντιος (450 π.Χ.) αποκάλυψε τον άρρητο, γεγονός που φύλαγαν μυστικό οι Πυθαγόρειοι, και προκάλεσε την εξέγερση των λαών που τελούσαν υπό την εξουσία των Πυθαγορείων.
Ρητός, κάθε α⁄β όπου α και β είναι ακέραιοι και β δεν είναι 0.
Παραδείγματα άρρητων αριθμών είναι το π ή το e και η τετραγωνική ρίζα του 2.
Οι άρρητοι αριθμοί είναι όλοι οι πραγματικοί αριθμοί οι οποίοι δεν είναι ρητοί.
Οι άρρητοι αριθμοί έχουν άπειρο αριθμό, μη επαναλαμβανόμενων περιοδικά, δεκαδικών ψηφίων.
Μία χαρακτηριστική ιδιότητα των άρρητων αριθμών είναι ότι το άθροισμα δύο άρρητων δίνουν συνήθως ως αποτέλεσμα έναν ρητό αριθμό.
Οι Πυθαγόρειοι δίδασκαν ότι οποιοσδήποτε φυσικός αριθμός μπορεί να εκφραστεί ως λόγος δυο άλλων φυσικών αριθμών και διέδιδαν πως με τη χρήση των αριθμών μπορούσαν να επιλύσουν όλα τα προβλήματα του πραγματικού κόσμου.
Η πρώτη ενδεχομένως κρίση στα Μαθηματικά εμφανίστηκε συνοδευόμενη από πολιτική κρίση όταν, σύμφωνα με την παράδοση, ο Ίππασος ο Μεταπόντιος (450 π.Χ.) αποκάλυψε τον άρρητο, γεγονός που φύλαγαν μυστικό οι Πυθαγόρειοι, και προκάλεσε την εξέγερση των λαών που τελούσαν υπό την εξουσία των Πυθαγορείων.
Αριθμοί
Άρω + τίθημι
Ένας αριθμός είναι ένα μαθηματικό αντικείμενο που χρησιμοποιείται για υπολογισμό, κατάταξη στοιχείων και μέτρηση.
Στα μαθηματικά, ο ορισμός του αριθμού έχει επεκταθεί με την πάροδο των χρόνων να περιλαμβάνει τέτοιους αριθμούς όπως το 0 (το 0 δεν ήταν καν ένας αριθμός για τους αρχαίους Έλληνες) , αρνητικούς αριθμούς (δηλ. παράγει μηδέν όταν προστίθεται στον αντίστοιχο θετικό [<τίθημι] ακέραιο), ρητούς αριθμούς, άρρητους αριθμούς και μιγαδικούς αριθμούς.
Ένας αριθμός είναι ένα μαθηματικό αντικείμενο που χρησιμοποιείται για υπολογισμό, κατάταξη στοιχείων και μέτρηση.
Στα μαθηματικά, ο ορισμός του αριθμού έχει επεκταθεί με την πάροδο των χρόνων να περιλαμβάνει τέτοιους αριθμούς όπως το 0 (το 0 δεν ήταν καν ένας αριθμός για τους αρχαίους Έλληνες) , αρνητικούς αριθμούς (δηλ. παράγει μηδέν όταν προστίθεται στον αντίστοιχο θετικό [<τίθημι] ακέραιο), ρητούς αριθμούς, άρρητους αριθμούς και μιγαδικούς αριθμούς.
Εγγραφή σε:
Σχόλια (Atom)